
Trace identities and their semiclassical implications

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 2299

(http://iopscience.iop.org/0305-4470/33/11/310)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.33 (2000) 2299–2312. Printed in the UK PII: S0305-4470(00)07660-5

Trace identities and their semiclassical implications

Uzy Smilansky†
Fachbereich Physik, Philipps-Universitaet Marburg, D-35032 Marburg, Germany

Received 9 September 1999, in final form 6 January 2000

Abstract. The compatibility of the semiclassical quantization of area-preserving maps with some
exact identities which follow from the unitarity of the quantum evolution operator is discussed.
The quantum identities involve relations between traces of powers of the evolution operator. For
classicallyintegrablemaps, the semiclassical approximation is shown to be compatible with the
trace identities. This is done by the identification of stationary phase manifolds which give the
main contributions to the result. The compatibility of the semiclassical quantization with the trace
identities demonstrates the crucial importance of non-diagonal contributions. The same technique
is not applicable forchaoticmaps, and the compatibility of the semiclassical theory in this case
remains unsettled. However, the trace identities are applied to maps which appear naturally in the
theory of quantum graphs, revealing some features of the periodic orbit theory for these paradigms
of quantum chaos.

1. Introduction

This paper focuses on quantum maps which are represented by unitary evolution operatorsU

on anM-dimensional Hilbert space. The quantum map propagates any initial stateψ0 in the
Hilbert space by

ψt+1 = Uψt = Ut+1ψ0. (1)

Traces of powers ofU will be the main object of our study. They will be denoted bytn ≡ trUn.
The fact thatU is unitary imposes various relations amongst thetn which should be satisfied
identically. In this paper I would like to study a certain class of identities, the simplest version
of which reads

lim
ε→0

ε

∞∑
n=n0

t∗n tn+νe
−nε = tν

for arbitrary integersn0 andν. The tracestn can be expressed as sums over periodic orbit
contributions. In most cases of interest the periodic orbit expressions are only valid within the
semiclassical approximation. However, in the theory of quantum graphs, the periodic orbit
expressions are exact. The purpose of the present paper is to study the consequences of the
trace identities in periodic orbit theory. When periodic orbit expressions are only approximate,
the compatibility of the semiclassical approximation is the main issue. We shall show that for
integrable maps, the compatibility results from special correlations between contributions of
certain periodic orbits. These methods cannot be used in the study of chaotic maps. However,
the theory of quantum graphs is a convenient paradigm of quantum chaotic systems. Here,
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the trace identities can be reduced to express exact correlations between families of periodic
orbits.

The trace identities will be proved and discussed in detail in section 2. Before doing this,
it is instructive to review a few other identities, which involve thetn, and which were used in
past investigations of the semiclassical approximation [1–4].

The first class of identities can be derived by studying the properties of the characteristic
polynomial

pU(z) ≡ det(I − zU) =
M∑
m=0

amz
m. (2)

SincepU(U†) = 0,

a0 = 1= −
M∑
m=1

am(U
†)m. (3)

Multiplying by Un (n > M) and taking the trace one obtains

tn = −
M∑
m=1

amtn−m. (4)

By successive applications of the above relation, all the tracestn with n > M can be expressed
in terms of the traces of theM lowest powers.

An important consequence of the unitarity ofU is theinversive symmetryof the coefficients
am,

am = ei2a∗M−m (5)

where det(−U) ≡ ei2. One can utilize the inversive symmetry to obtain identities between
the tn by invoking Newton’s identities. They relate the tracestn and the coefficients of the
secular polynomialam,

am = − 1

m

(
tm +

m−1∑
k=1

aktm−k

)
. (6)

Sinceam = 0 for m > M, the tn for all n > M depend linearly on the lowerm 6 M

traces, which is consistent with our previous observation. Successive iterations yield explicit
expressions for the coefficientsam in terms of thetn, and one can substitute them in (4) or in
(5).

The significance of such relations in the semiclassical context is due to the fact thattn
are expressed semiclassically as sums overn-periodic orbits of the classical map. Thus, the
compatibility with the exact identities implies that there exist identities relating sums over
periodic orbits ofdifferent periods which are satisfied within the margins of semiclassical
accuracy. The resulting identities between thetn become complicated asn andM increase,
and therefore their compatibility with the semiclassical approximation was seldom tested [5].

Another set of identities which will be shown to be closely related to this paper was
introduced by Berry in [6]. He considered the spectral density of a quantum Hamiltonian

d(E) =
∞∑
n=1

δ(E − En) (7)
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and its smooth approximant

dε(E) =
∞∑
n=1

δε(E − En) with δε(x) = 1

π

ε

ε2 + x2
. (8)

Assuming that the spectrum has no degeneracies (En 6= Em whenn 6= m), one finds

2π lim
ε→0

εd2
ε (E) = d(E). (9)

Substituting the semiclassical trace formula in both sides of (9) one sees that the left-hand
side is quadratic while the right-hand side is linear in the periodic orbit amplitudes. Integrating
(9) over a sufficiently large energy domain, the contributions of long orbits to the right-hand
side can be made arbitrarily small, while their contribution to the left-hand side will not be
smoothed out. This observation led Berry to conclude that the long periodic orbits must contain
information about the short periodic orbits if the semiclassical approximation is compatible
with (9). This information is stored as correlations between actions of periodic orbits, because
pairs ofdistinctperiodic orbits combine together to give an amplitude of orderε−1 in d2

ε (E),
which, upon multiplying byε reproduce the periodic orbit contributions to the oscillatory parts
of d(E). This is a highly ‘non-diagonal’ effect, which needs very special correlations between
the actions to find the correct result. This observation shows that the use of identities of this
type comes naturally in the context of the study of classical action correlations and their effect
on the statistics of the quantum spectra [9–11].

Keating [7] (see also [8]) generalized (9) and used it in his studies of the spectrum of the
Riemann zeros. The ‘non-diagonal’ correlations which are necessary to prove the identities
are introduced by using the Hardy–Littlewood conjecture on the correlations between primes.

Bogomolny [12] tested (9) for the spectrum of a rectangular billiard with periodic boundary
conditions and of integrable systems in general. By considering carefully the stationary
phase manifolds in the sums over periodic orbits which arise from the left-hand side, he
was able to perform the summations and to demonstrate the compatibility of the semiclassical
approximation with (9). Bogomolny’s methods [12] are used here to prove the compatibility of
the semiclassical approximation with the trace identities for integrable systems. The version of
(9) which is appropriate for maps, is given in (15) below. It is obtained from the trace identities
(10) by multiplying by eiνθ and summing overν. Thus, testing the semiclassical compatibility
with the trace identities, offers a check for each individualν, rather than a global test of their
sum.

This manuscript is arranged in the following way. The trace identities will be derived in
the next section. The semiclassical quantization of area-preserving maps will be reviewed in
section 3 and the compatibility of the semiclassical approximation will be demonstrated in
section 4 for integrable maps. The close relation between the compatibility problem and the
correlations between actions of periodic orbits will be addressed at the end of this section.
The difficulties encountered in attempting to use the same methods to study the compatibility
in the case of hyperbolic maps are discussed as well. Some progress in this direction can be
made, by considering maps which appear naturally in the analysis of quantum graphs [19–21].
The periodic orbit theory for these maps is exact, and the trace identities can be used to derive
certain relations which must exist amongstfamiliesof periodic orbits. This will be discussed
in section 5. The combinatorial nature of the periodic orbit theory of quantum graphs was
emphasized in [21], and the trace identities, when applied for a particular problem, are shown
in the appendix to lead to new combinatorial identities which involve Krawtchouk polynomials
[13, 14]. The latter are important building blocks in the theory of error-correcting codes [15],
and the identities might be of use in this branch of mathematics.
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2. Trace identities

Consider a unitary matrixU of dimensionM. Its spectrum consists ofM points on the unit
circle {eiθm , m = 1, . . . ,M}, where the eigenphases are real and are assumed to be distinct.
Recalling the notationtn ≡ trUn, the following identities hold for arbitrary integersn0 andν:

lim
ε→0

ε

∞∑
n=n0

t∗n tn+νe
−nε = tν . (10)

To prove these relations one substitutestn =
∑M

m=1 einθm and after summing the geometric
series, one uses

lim
ε→0

ε

1− ei(θm−θm′ )−ε =
{

1 for (θm − θm′) = 0

0 for (θm − θm′) 6= 0

}
= δm,m′ . (11)

The condition that there are no degeneracies in the spectrum ofU is used to justify the rightmost
equality in (11).

A few points are worth noting.

(a) Theε → 0 limit of the sum weighted by e−nε can be interpreted as a time average

lim
ε→0

ε

∞∑
n=n0

(·)ne−nε = lim
N→∞

1

N

n0+N∑
n=n0

(·)n. (12)

(b) Forν = 0, and usingt0 = M, one finds

lim
ε→0

ε

∞∑
n=0

1

M
|tn|2e−nε = 1. (13)

Thus, the time average of|tn|2/M approaches 1, a result familiar from the study of the
spectral form-factor for unitary matrices [16].

(c) The spectral density ofU on the unit circle can be written as

d(θ) =
M∑
l=1

δ2π (θ − θl) = lim
ε→0

dε(θ) dε(θ) ≡ 1

2π

∞∑
m=−∞

tme−imθ−ε|m|. (14)

Using (10), one can easily derive

2π lim
ε→0

εd2
ε (θ) = d(θ) (15)

which is the analogue of (9) for the spectrum of unitary operators.

The following identities which involve products of more than two traces can be proven
with the help of (11):

tν = lim
ε1→0
· · · lim

εk→0
ε1 · · · εk

∞∑
n1=n10

· · ·
∞∑

nk=nk0
t∗n1
· · · t∗nk t(n1+···+nk)+ν exp

(
−

k∑
i=1

niεi

)
(16)

where theni0 are arbitrary integers. The identities (16) can also be written as

tν1+···+νk = lim
ε1→0
· · · lim

εk→0
ε1 · · · εk

∞∑
n1=n10

· · ·
∞∑

nk=nk0
t∗n1+···+nk tn1+ν1 · · · tnk+νk exp

(
−

k∑
i=1

niεi

)
. (17)

The equivalence of (16) and (17) can be shown by taking the complex conjugate of (17),
denotingν1 + · · · + νk = −ν and shifting the summation variablesni by νi . The shifts do not
affect the result since they can be absorbed in the arbitrary{ni0}.

The compatibility of the semiclassical approximation fortn with the identities (10) and
(16) will be investigated in section 4, after the semiclassical approximation fortn which will
be reviewed in the following section.
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3. Semiclassical quantization of maps

The quantum unitary operatorU to be investigated, is assumed to be the quantum version of an
area-preserving mapF acting on a finite phase space domainM with area|M|. (For the sake
of simplicity the maps to be considered to act on manifolds withf = 1, and will be assumed
to have the twist property.) The dimension of the Hilbert space,M, is related to the classical
phase space volume|M| by

M =
[ |M|
(2πh̄)f

]
(18)

where [· ] stands for the integer part andf is the number of classical freedoms.
The phase space coordinates are denoted byγ = (q, p) andγ is mapped toγ̄ ≡ F(γ ).

Area-preserving maps can be derived from a generating function (action)8(q, q̄)

p = −∂8(q, q̄)
∂q

p̄ = ∂8(q, q̄)

∂q̄
. (19)

The explicit mapping function̄γ = F(γ ) is obtained by solving the implicit relations (19).
The twist condition ensures that the implicit equations (19) have a unique solution.

In the case where the map is integrable, letI be the invariant momentum (action variable)
under the action of the map andφ the canonically conjugate angle variable. The domain of
the map is the annulusI ∈ [Imin, Imax], φ ∈ [0, 2π) and |M| = 2π(Imax− Imin). In this
representation, the generating function must take the form8(φ, φ̄) = 8(φ̄−φ). The explicit
map is

Ī = I 1φ = φ̄ − φ = f (I). (20)

Heref (I) (the angular velocity) is the inverse of the generating relationI = 8′(1φ), which
gives1φ in terms ofI . The twist condition is fulfilled if8′′(1φ) 6= 0.

The semiclassical quantization ofF provides an approximation to the exact quantum map.
In theq representation it is [3, 17]

〈q|U |q̄〉scl =
(

1

2πh̄i

)1/2 [
∂28(q, q̄)

∂q∂q̄

]1/2

e(i/h̄)8(q,q̄). (21)

It can be shown to preserve the composition propertyUt+s
scl = Ut

sclU
s
scl and unitarity

Uscl(Uscl)
† = I within the accuracy margin of the semiclassical approximation.

The semiclassical approximation fortn involves the periodic manifolds of the classical
map. For hyperbolic maps [3, 18],

[tn]scl =
∑
p∈Pn

npeir(8p/h̄−νpπ/2)

| det(I − T rp )|1/2
. (22)

The semiclassical approximation fortn involves the set ofn-periodic orbitsPn which are
repetitions of primitive periodic orbits ofF , with periodsnp which are divisors ofn, so that
n = npr. The monodromy matrix is denoted byTp. Each periodic orbit contribution is
endowed with a phase which is the action summed along the periodic orbit,

8p =
np∑
j=1

8(qj , qj+1) (with qnp+1 = q1) (23)

and of the Maslov contribution−νpπ/2.
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For integrable maps, the action-angle variables(I, φ)will be used, whereI is the classical
invariant. In the quantum picture,I is quantized to integer multiples of ¯h so thatIj = jh̄

and 16 j 6 M. The matrixU is diagonal in the action representation. The semiclassical
approximation for the eigenphases can be carried out directly,

[
θj
]

scl =
1

h̄

[
8(f (Ij ))− Ijf (Ij )

]
(24)

wheref (I) is the angular frequency (20). Thus,

[tn]scl =
M∑
j=1

ein[θj ]scl. (25)

This semiclassical expression is not of the desired form, because it does not expresstn in terms
of the periodic orbits. However, performing thej sum using Poisson summation, one finds

[tn]scl =
(

2π

nh̄

)1/2

e−i(n+ 1
2 )π/2

n∑
m=1

[
8′′(1φ = 2πm/n)

]1/2
e(i/h̄)n8(1φ=2πm/n). (26)

Now, tn is expressed as a sum over the periodic manifolds of periodn and winding numberm.
They occur at values ofI for which the angular frequency is rationalf (In,m) = 2πm/n.

The expressions fortn in terms of periodic manifolds in the cases of classically integrable
and classically chaotic maps are the necessary building blocks for the discussions which
follows.

4. Compatibility of the semiclassical approximation

The compatibility of the semiclassical approximation fortn with the trace identities will now
be shown forintegrablemaps. This is done by applying Bogomolny’s method [12]. Turning
first to (10), the semiclassical expression (26) fortn is substituted into the right-hand side of
(10), resulting in

ε

∞∑
n=n0

[
t∗n tn+ν

]
scl e
−nε = εe−iνπ/2 2π

h̄

∞∑
n=n0

e−nε

(n(n + ν))1/2

×
n∑

m=1

n+ν∑
m′=1

(
8′′
(

2π
m

n

)
8′′
(

2π
m′

n + ν

))1/2

e(i/h̄)[(n+ν)8(2πm′/(n+ν))−n8(2πm/n)] .

(27)

The sum above runs over the periodic manifolds (tori) of the map. It is important to respect
the integer character ofn,m,m′, since only for integer values are the classical orbits periodic.
Had we turned these sums to integrals by, for example, Poisson summation, we would have lost
this feature. To get a finite contribution for (27) we must collect all the terms which contribute
coherently to the sum. Summing over these terms (weighted by e−εn) should provide a pole
at ε = 0, so that the final multiplication byε will yield the residue at the pole. Inspecting
(27) we immediately notice that, for example, the terms for whichm′/(n + ν) = m/n = α(ν)
(whereα(ν) depends only onν) yield a contribution of the desired nature, because the net
phaseν8(2πα(ν)) is common to all the summed terms. To find these contributions in a
consistent way, we shall identify them as the points where the first variation of the phase of
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the summand vanishes:

δ{phase} = δn
[(
8

(
2π

m′

n + ν

)
−8

(
2π
m

n
)

)
−2π

(
m′

n + ν
8′(2π

m′

n + ν

)
− m
n
8′
(

2π
m

n

))]
+δm′

[
2π8′

(
2π

m′

n + ν

)]
− δm

[
2π8′

(
2π
m

n

)]
. (28)

The phase is stationary with respect to variations inn when

m′

n + ν
= m

n
. (29)

One should consider only the solutions in the rangem 6 n andm′ 6 n + ν, consistently with
the range of the sums overm andm′. The solution of (29) in integers is

n = Nν with N = N0, . . . ,∞
m = Nk with k = 1, . . . , ν

m′ = (N + 1)k.

(30)

The arbitrary integern0 is replaced by another arbitrary constantN0 which fixes the lower limit
of then sum. This solution is the general solution for the generic cases. One can always invent
maps for which other stationary points exist. For each value ofk, the points of stationary phase
form a grid. Near each grid point, the summation variables will be replaced by local variables

n = Nν + δn m = Nk + δm m′ = (N + 1)k + δm′ (31)

with

|δn| 6 1
2ν |δm| 6 1

2k |δm′| 6 1
2k. (32)

The range of variation of the local variables is chosen such that each point in the original sum
will be counted once. The contribution of the domain about each grid point will be computed by
using the stationary phase approximation. The phase cannot be made stationary with respect to
independent variations ofm andm′ because there is no guarantee that8′(2πm′/(n + ν)) = 0
and8′(2πm/n) = 0 have solutions whenn, m andm′ are integers. However, when (29) is
satisfied, the phase is stationary on the manifoldδm = δm′. Thus, the sum overn,m,m′ in
(27) is replaced by

∞∑
n=n0

n∑
m=1

n+ν∑
m′=1

→
ν∑
k=1

∞∑
N=N0

{
ν/2∑

δn=−ν/2

k/2∑
δm=−k/2

k/2∑
δm′=−k/2

δδm,δm′

}
(33)

where the curly brackets on the right enclose the contribution of the vicinity of a single grid
point, restricted to the lineδm = δm′. On this line the summand is constant and therefore the
summation amounts to multiplication byk. Theδn sum can be computed by considering the
quadratic approximation to the phase near the stationary points and retaining the leading term
in the result. It is determined by the curvature of the phase at the point where it is stationary

∂2{phase}
∂n2

∣∣∣∣ = −(2π)2 k2

N(N + 1)ν3
8′′
(

2π
k

ν

)
. (34)

The amplitude of the result depends onN , but when it is substituted in (27) it exactly cancels the
N -dependent coefficient. The phase of theδn sum isν8(2πk/ν), which is also independent
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ofN . Thus, the resulting terms of theN sum depend onN only through e−ενN . Summing and
taking the limitε → 0 results in a factorν−1. Collecting all the factors, one finds that (27) is
approximated by

lim
ε→0

ε

∞∑
n=n0

[
t∗n tn+ν

]
scl e
−nε =

(
2π

νh̄

)1/2

e−i(ν+ 1
2 )π/2

ν∑
k=1

[
8′′
(

2π
k

ν

)]1/2

e(i/h̄)ν8(2πk/ν) = [tν ]scl .

(35)

This completes the proof that the trace identities (10) are compatible with the semiclassical
approximation.

The more complex relations (16) or the equivalent (17) can be checked using the same
technique. As an example, the compatibility of the identity

lim
ε1,ε2=0

ε1ε2

∑
n1,n2

t∗n1+n2
tn1+ν1tn2+ν2e

−n1ε1−n2ε2 = tν1+ν2 (36)

will be demonstrated in some detail.
Substituting in (36) the semiclassical approximation (26) fortn, one has to consider the

sum

ε1ε2e−i(ν1+ν2)π/2

(
2π

h̄

)3/2 ∑
n1,n2

e−n1ε1−n2ε2

(
1

n1 + n2

1

n1 + ν1

1

n2 + ν2

)1/2

×
n1+ν1∑
m1=1

n2+ν2∑
m2=1

n1+n2∑
m12=1

[
8′′
(

2π
m1

n1 + ν1

)
8′′
(

2π
m2

n2 + ν2

)
8′′
(

2π
m12

n1 + n2

)]1/2

× exp

{
i

h̄

[
(n1 + ν1)8

(
2π

m1

n1 + ν1

)
+ (n2 + ν2)8

(
2π

m2

n2 + ν2

)
−(n1 + n2)8

(
2π

m12

n1 + n2

)]}
. (37)

The phase of (37) can be made stationary with respect to variations ofn1 andn2 under the
following conditions:

−812 +81 +
m12

n1 + n2
8′12−

m1

n1 + ν1
8′1 = 0

−812 +82 +
m12

n1 + n2
8′12−

m2

n2 + ν2
8′2 = 0

(38)

where the short-hand notation81 = 8(2πm1/(n1 + ν1)) and8′1 = 2π8′(2πm1/(n1 + ν1)),
etc was used. The conditions (38) are satisfied by solutions in integers of

m12

n1 + n2
= m1

n1 + ν1
6 1 and

m12

n1 + n2
= m2

n2 + ν2
6 1. (39)

The general solutions depend on three integersN1,N2 andk so that

n1 = (N1− 1)ν1 +N1ν2 with N1 = N0, . . . ,∞
n2 = N2ν1 + (N2 − 1)ν2 with N2 = N0, . . . ,∞
m12 = (N1 +N2 − 1)k with 16 k 6 ν1 + ν2 (40)

m1 = N1k

m2 = N2k.

Again, for each value ofk the points of stationary phase form a grid and one computes separately
the contribution from the vicinity of each grid point. The summation volume about each grid
point is of size

|δn1, δn2| 6 1
2(ν1 + ν2) |δm1, δm2| 6 1

2k |δm12| 6 k. (41)
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The phase cannot be made stationary with respect to independent variations ofm1, m2 and
m12. However, as in the previous case, the phase is constant for

δm12 = δm1 + δm2. (42)

The sums in (37) are rewritten in terms of the local variables for each grid point, and the
curly brackets encloses the sums over individual domains (41),
∞∑

n1=n0

∞∑
n2=n0

n1+ν1∑
m1=1

n2+ν2∑
m2=1

n1+n2∑
m12=1

→
ν1+ν2∑
k=1

∞∑
N1=N0

∞∑
N2=N0

{∑
δn1

∑
δn2

∑
δm1

∑
δm2

δδm12,δm1+δm2

}
. (43)

The last Kroneckerδ is due to the restriction (42). Since the summands in theδm1, δm2 sums
are constant, they contribute a factor ofk2. Theδn1, δn2 sum is performed again by expanding
the phase to second order and retaining the leading term in the result. The determinant of
second derivatives at the point of stationary phase is

det

(
∂2{phase}
∂ni∂nj

)
= −

(
2π

k

ν1 + ν2

)4(
8′′(2π

k

ν1 + ν2
)

)2
ν1 + ν2

(n1 + n2)(n1 + ν1)(n2 + ν2)
(44)

wheren1 andn2 take the values (40). Collecting all the factors, and performing theN1 andN2

sums while taking the limitε1, ε2→ 0, one remains with the sum overk which can be easily
identified as

[
tν1+ν2

]
scl.

This method can be extended to identities involving higher powers. The procedure
becomes much more cumbersome and will not be reproduced here.

The essence of the derivations outlined above is that the phase of the summands is constant
on an infinite grid of integers. Only when all of them are summed together do they provide
the necessary singularity which is cancelled against theε factors and gives the correct answer.

The compatibility of the trace identities with the semiclassical approximation demonstrates
the importance of ‘non-diagonal’ correlations which are essentially due to the repetitive nature
of the distribution of periodic orbits for integrable maps. As a matter of fact, had one applied
the standard diagonal approximation where repetitions are neglected, to the sums (27) and
(37) one would obtain a vanishing result whenν or (ν1 + ν2) 6= 0. The condition (29) picks
up (non-diagonal) pairs ofn-periodic andn + ν periodic manifolds which coincide, since the
action variableIn,m is the same. This feature is effective in integrable systems since the periodic
manifolds are specified completely by integers (the periodn and the winding numberm), and it
is responsible for the compatibility of the trace identity with the semiclassical approximation.
The condition (40) expresses a similar coincidence of three periodic manifolds. In chaotic
systems, repetitions do exist but they play a much less important role, because apart from the
periodn there exists no other integer which would replacem to specify the periodic orbits.
This is why the method described in the present section fails for the chaotic case. For systems
which are chaotic in the classical limit, attempts to identify the classical correlations which
are implied by the trace identities have failed, so far, to give a definite answer.

An alternative way to explain the compatibility of the trace identities with the semiclassical
quantization of integrable maps is to note that the semiclassical expressions (25) fortn have the
formal structure as a trace of a unitary matrix. Since the trace identities are based exclusively
on this form, they are ensured automatically. This observation does not detract from the work
presented above because it gives new insight into the interplay between the trace identities
and the correlations in the spectrum of classical actions. A similar argument can be applied
to explain the analogous result in Bogomolny’s work [12]. There, the trace formula is derived
starting with the EBK expression for the spectrum which is manifestlyreal anddiscrete. The
identity (9) is valid automatically for such a spectrum, irrespective of the actual value of the
energies.
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5. Trace identities and quantum maps on graphs

So far, any attempt to assess the compatibility of the trace identities with the semiclassical
approximation for classically chaotic systems ended in failure. Even for maps on graphs,
where the periodic orbit expansion oftn is exact [19–21], I was unable to derive the trace
identities starting from the exact, periodic orbit expressions. In the present section, I use a
different approach and study the consequences of the trace identities on the periodic orbit theory
for graphs. The resulting identities will be shown to express correlations between families of
periodic orbits.

In the following paragraphs the definition of the quantum map on a graph will be sketched.
A complete exposition can be found in [21]. A graph is a collection ofV vertices connected
byB bonds. The number of bonds emerging from the vertexi is denoted byvi . To each bond
b = (i, j) we assign a lengthLb, and assume that the lengths are rationally independent.
The Schr̈odinger operator for the graph is the one-dimensional Laplacian on each bond
supplemented with appropriate boundary conditions on the vertices. The most general solution
of the Schr̈odinger equation consists of counter-propagating waves on the bonds. They are
completely specified by the 2B amplitudesab, ab̂ of these waves. The boundary conditions
at the vertices, must be chosen in a way which guarantees that the resulting operator is self-
adjoint. This can be done, for example, by assigning to each vertex aunitary ‘vertex scattering
matrix’ σ (i)b,b′ , whose indicesb, b′ run over thevi bonds which emerge fromi. The boundary
conditions are imposed by requiring that at each vertex, the amplitudes of the waves which
impinge on the vertex and scatter from it, are related byσ (i).

The quantum evolution on the graph corresponds to a free propagation along the bonds,
and scattering at the vertices. It is effected by the unitary 2B × 2B matrix

Sd ′,d (k) = Cd ′,deiLd′ kσ
(id )
d ′,d (k). (45)

Hered, d ′ go over the set of 2B directed bonds,Cd ′,d is the directed-bond connectivity matrix,
which takes the value 1 when the end vertex ofd (denoted byid ) coincides with the start vertex
of d ′. Otherwise,Cd ′,d = 0. k is the wavenumber at which the evolution is considered. One
can show that this evolution operator has a ‘classical’ counterpart which describes a mixing
evolution on an appropriately defined Poincaré section.

The relevance of graphs for the present discussion follows from the fact that trSn(k) can
be written in terms ofn-periodic loops on the graph in close analogy to (22). Namely,

tr Sn(k) =
∑
p∈Pn

npArpeikrlpeiµpr (46)

where the sum is over the setPn of primitive periodic orbits whose periodnp is a divisor ofn,
with r = n/np. lp =

∑
b∈p Lb is the length of the periodic orbit.µp is the phase accumulated

from the vertex matrix elements along the orbit, and it is the analogue of the Maslov index.
The amplitudesAp are given by

Ap =
np∏
d=1

∣∣σ (id )d+1,d

∣∣ ≡ e−
1
2γpnp (47)

whered runs over the directed bonds traversed by the periodic orbit, andγp appears naturally
in the classical description of the graph as the stability exponent. The main difference between
(22) and (47) is that the former is an approximation while the latter isexact.

The number ofn-periodic orbits on the graph proliferate exponentially withn, in complete
analogy with then-periodic orbits of area-preserving and hyperbolic maps. The length
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spectrum ofn-periodic orbits is highly degenerate: given a set ofB non-negative integers

Eq = (q1, . . . , qB)

B∑
b=1

qb = n (48)

all the periodic orbits which are obtained by traversing the bondsb qb times but in a different
order areisometricwith lEq =

∑B
b=1 qbLb. Note that not all the possible partitions ofn

into B non-negative integers correspond to legitimate periodic orbits, since the orbits must
be connected. The amplitudes of isometric orbits contribute coherently to the trace (46).
Grouping together the amplitudes of the isometric lengths we obtain

sn(k) ≡ tr Sn(k) =
∑
Eq
A(n, Eq) eiklEq A(n, Eq) =

∑
p∈Eq

npArpeiµpr . (49)

If Eq is compatible with the connectivity, then the right sum extends over all the isometric
n-periodic orbits characterized byEq. Otherwise,A(n, Eq) = 0. This convention will be used
henceforth, and all sums over vectors of integers (such as the left-hand sum in (49)) go over
all the possibleEq according to (48).

Expression (49) forsn(k) can now be substituted into the trace identity (10),

lim
ε→0

ε

∞∑
n=n0

∑
Ef ,Eg
A∗(n, Ef )A(n + ν, Eg) eik(lEg−l Ef )e−nε =

∑
Eh
A(ν, Eh) eiklEh . (50)

Here, Ef , Eg andEhare vectors of non-negative integers which sum up ton,n+ν andν, respectively.
Since (50) is valid for everyk, and utilizing the fact that the lengths of the bonds are rationally
independent, we find that for anyEh,

lim
ε→0

ε

∞∑
n=n0

∑
Ef
A∗(n, Ef )A(n + ν, Ef + Eh) e−nε = A(ν, Eh). (51)

This identity is valid for arbitraryEh. However, only ifEh is compatible with the connectivity,
A(ν, Eh) 6= 0. The above identity is the main result of this section. The amplitudesA(n, Eq)
are formed as a coherent superposition of contributions of the isometric periodic orbits which
constitutefamilies. As such, they depend crucially on the relative phases of the amplitudes of
the individual periodic orbits. These phases are not random (see, e.g., [22]) and only due to
their delicate imbalance can the identities (51) be satisfied.

To clarify the structure of (51), consider a few examples. Ifν = 0 (and Eh = 0), one
obtains the analogue of (13), which is now expressed as a condition on the family amplitudes,

lim
ε→0

ε

∞∑
n=n0

∑
Eq
|A(n, Eq)|2e−nε = 2B. (52)

When ν = 1, the right-hand side of (51) vanishes for graphs without loops because
the shortest periodic orbits are 2-periodic. The left-hand side vanishes because one cannot
construct simultaneously a pair ofn- and(n + 1)-periodic orbits which differ from each other
by the addition of asingletraversal of one of the bonds. Hence eitherA(n, Eq) orA(n+1, Eq +E1)
vanish.

For ν > 2, I was not able to disentangle the mechanism which is responsible for the
validity of (51). However, the study of graphs emphasizes the classification of periodic orbits
into families of strongly correlated orbits. This phenomenon finds its analogue in periodic
orbits of area-preserving, chaotic maps.

The computation of the family amplitudesA(n, Eq) is a combinatorial problem, which, for
particular cases, can be carried out explicitly (see, e.g., [21, 23]). Thus, the trace identities
can be used to derive combinatorial identities of a novel type. One example of this class of
identities is described in the appendix.
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6. Summary

The trace identities introduced in this paper were shown to uncover correlations between
periodic orbits. In the integrable case, they are of the same type which was discovered and
discussed by Bogomolny [12]. As for hyperbolic maps, at this stage, one can only infer from
the study of quantum graphs that the correlations are linked with the partition of the set of
periodic orbits into strongly correlated families. This observation is consistent with other
studies of periodic orbits correlations [11].

Acknowledgments

I would like to thank the Humboldt foundation for the award which enabled me to perform
this research at the Philipps-Universitaet Marburg. The important role of Professor Eugene
Bogomolny in this work was mentioned in the text, and it is a pleasure to thank him again. I am
indebted to Dr Harel Primack for his critique and for the helpful comments and suggestions.
The appendix follows from the work on quantum graphs and combinatorics which is conducted
in collaboration with Dr Holger Schanz, whose cooperation is acknowledged. I am obliged
to Professor Bruno Eckhardt for hospitality in Marburg and for useful discussions. The work
was supported in part by the Minerva Center for Nonlinear Physics of Complex Systems, and
by a grant from the Israel Science Foundation.

Appendix. Identities for Krawtchouk polynomials

We consider here the quantum map for a two-star graph which was defined and studied in
detail in [21]. It consists of a ‘central’ vertex out of which emerge two bonds, terminating at
vertices (with indicesj = 1, 2) with valenciesvj = 1. The ratio between the bond lengthsLj
is assumed to be irrational. This simple model is not completely trivial if the central vertex
scattering matrix is chosen as

σ (o) =
(

1/
√

2 i/
√

2

i/
√

2 1/
√

2

)
. (A1)

At the two other vertices the vertex scattering matrix is just 1. The Hilbert space is of dimension
two and the evolution operator is

S(k) =
(

e2ikL1 0
0 e2ikL2

)(
1/
√

2 i/
√

2

i/
√

2 1/
√

2

)
(A2)

where the diagonal matrix on the left takes care of the free propagation on the bonds and the
reflections from the verticesj = 1, 2.

One can write anexactexpression forsn(k) = tr Sn(k) in terms of periodic orbits on the
two-star graph as in (46). There are 2n/n n-periodic orbits. However, their lengths can take
only n + 1 distinct values:L(n, q) = 2(qL1 + (n − q)L2), with 0 6 q 6 n. Thus, one can
write

sn(k) =
n∑
q=0

eiL(n,q)kA(n, q) (A3)
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whereA(n, q) is the coherent sum of the amplitudes contributed by the isometric orbits with
lengthL(n, q). It can be computed explicitly [21, 23] in terms of Krawtchouk polynomials

A(n, q) = 1√
2n


1 for q = 0 orn

(−1)n+q

√
n

q

(
n

q

)
Pn−1,n−q(q) for 0< q < n

(A4)

and the Krawtchouk polynomials are defined as in [13, 14] by

PN,k(x) =
(
N

k

)−1/2 k∑
ν=0

(−1)k−ν
(
x

ν

)(
N − x
k − ν

)
for 06 k 6 N. (A5)

Substituting (A3) in the trace identity (10), we obtain for any integersν andn0

lim
ε→0

ε

∞∑
n=n0

e−nε
n∑
q=0

n+ν∑
p=0

e2ik[(p−q)L1+(ν−(p−q))L2]A(n + ν, p)A(n, q)

=
ν∑
κ=0

A(ν, κ)e2ik[κL1+(ν−κ)L2] . (A6)

This is valid for any value of the wavenumberk. When the lengthsL1 and L2 are
incommensurate, the equality can hold only if the coefficients of the phase factors e2ikL(ν,κ) on
both sides are equal. This implies

lim
ε→0

ε

∞∑
n=n0

e−nε
n∑
q=0

A(n + ν, q + κ)A(n, q) = A(ν, κ) (A7)

with 0 6 κ 6 ν. Restricting toκ to the interval 16 κ 6 ν − 1 the identity can be expressed
in terms of Krawtchouk polynomials exclusively,√
ν

κ

(
ν

κ

)
Pν−1,ν−κ(κ) = lim

ε→0
ε

∞∑
n=n0

e−nε

2n

n∑
q=0

√
n(n + ν)

q(q + κ)

(
n

q

)(
n + ν

q + κ

)
×Pn−1,n−q(q)Pn+ν−1,n+ν−q−κ(q + κ). (A8)

I could not find identities of this kind in the standard books on Krawtchouk polynomials.
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